
Factorization of Polynomials over Finite Fields 

By Robert J. McEliece* 

Abstract. If f(x) is a polynomial over GF(q), we observe (as has Berlekamp) that if 
h(x)2 =_h(x) (modf(x)), thenf(x) = IHa eGF(q) gcd (f(x), h(x) - a). The object of this paper 
is to give an explicit construction of enough such h's so that the repeated application of 
this result will succeed in separating all irreducible factors of f. The h's chosen are loosely 
defined by hi(x) = xi + xiq + xiq2 + * * * (mod f(x)). A detailed example over GF(2) is 
given, and a table of the factors of the cyclotomic polynomials 4b(x) (mod p) for p = 2, 
n < 250; p = 3, n < 100; p = 5, 7, n < 50, is included. 

I. Introduction. The object of this paper is to present a workable algorithm for 
factoring polynomials over finite fields. The existence of such an algorithm is not in 
doubt since it is clearly possible to generate recursively all irreducible polynomials 
of a given degree over a given finite field, and then test any polynomial for di- 
visibility by the irreducibles, one by one; naturally such an algorithm is highly 
impractical for even low degrees. It is of course frequently necessary to be able to 
factor polynomials over finite fields; for example in factoring rational primes in 
algebraic number fields. The algorithm to be given is quite usable; for example over 
GF(2) it is effective for hand calculations up to degree 15 or so, and with the aid 
of a computer it is possible to go up to degree several hundred without difficulty. 
Through the use of this algorithm we have constructed a table, appearing in the 
microfiche section of this issue, of the factors of n - 1 over GF(p) for p = 2, 
n ? 250; p = 3, n < 100; p = 5, n < 50, p = 7, n < 50. This table gives the 
factorization of the primes 2, 3, 5, 7 in the corresponding cyclotomic fields, and is 
also of use in studying linear recurrence relations of period n over GF(p), since the 
characteristic polynomials of such recurrences are precisely the divisors of n - 1. 
Published tables of irreducible polynomials over finite fields are insufficient to 
factor n - 1 for even modest values of n; for example Marsh's table [1] of polyno- 
mials irreducible over GF(2) up to degree 19 cannot be used to factor X43-1 over 
GF(2). 

Let us finally mention that Berlekamp [2] has recently published a similar 
algorithm, which shares Theorem 1, below, with ours, but proceeds in a somewhat 
different direction. A brief comparison of the two algorithms is given at the end of 
the next section. 

II. The Algorithm. Throughout, let F = GF(q), q = pr, p a prime. If f(x) and 
g(x) are polynomials over F, denote by (f, g) their greatest common divisor, which 
we assume is monic. (We also adopt the convention (f, a) = 1 for a C F.) We are 
given a polynomial f(x) of degree n over F, and are asked to write f as a product of 
irreducible factors. We are free to assume that f (x) is squarefree, since unless f is a 
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pth power, f/(f, f') will be a nontrivial squarefree divisor of f. And while the algo- 
rithm can be applied to an arbitrary polynomial, squarefree or not, to find the ir- 
reducible powers which divide it, any preliminary reduction in the degree of f which 
can be made will shorten the computations. Thus f(x) is henceforth squarefree. We 
further assume f(O) 0 0. Under these circumstances there will be a smallest integer 
e such that f(x) [Xe -1 and (e, p) = 1. e is called the period of f. 

Theorem 1 gives a way to factor f, under certain circumstances: 
THEOREM 1. If h (x) - h (x) (mod f(x)), then 

f(x) = II (f(x), h(x) - a) 
aEF 

Proof. Let 0 be a root of f in a splitting field K. Then h(0)2 = h(0) and so h(0), 
being fixed by the Galois group of K/F, is an element of F. Thus every root of f is a 

&Dcdzbrjtot f;ti 7@tiri-twll$.hz(G/A-awiit Tbe"c,-rm 1. 1tojlws. 
Theorem 1 need not give a nontrivial factorization of f; if h(x) a(modf(x)) for 

some a C F, Theorem 1 is of no use. However, if Theorem 1 does give a nontrivial 
factorization of f, we say that h is an f-reducing polynomial; naturally h is auto- 
matically f-reducing if 0 < deg h < n = deg f. (It will soon develop that f-reducing 
polynomials always exist if f is reducible.) The object of the rest of this section is to 
indicate a method of constructing f-reducing polynomials. There are two possible 
ways the algorithm could work: first, we could find just one f-reducing polynomial, 
and then inductively proceed to find reducing polynomials for the resulting factors; 
or, we could produce so many f-reducing polynomials that they themselves would 
reduce all resulting factors of f. We shall below give two similar families of f-reduc- 
ing polynomials, corresponding to these two possibilities. 

If we discover the least integer N such that xqN _ x(modf(x)), then N = l.c.m. 
(ni, n2, * * *, nt), where f(x) = fi(x) f2(x) ... ft(x) is the factorization of f into ir- 
reducibles with deg fk = nk. N is the degree of the splitting field for f. Now consider 
the algebra Rf over GF(q) of polynomials y = y(x) (mod f(x)), and define the map 
T(y) = y + yq + yq2 + * * * + yqN-l. Next we say that fk is a regular divisor of f 
if N/nk is not divisible by p. Note that regular divisors always exist. 

THEOREM 2. T is a GF(q)-linear function on Rf whose rank is equal to the number 
of regular divisors of F. Range (T) C GF(q) if and only if f is irreducible. 

Proof. By a generalization of the well-known Chinese Remainder Theorem 
t3, p. 63] Rf is isomorphic to the direct sum Rf1 , * * Rf t under the map y 
(y1, Y2, * y t) with y Yk (mod fk(x)). Since the fk are irreducible, the Rfk are 
fields. Let Tk be the trace on Rfk; i.e., Tk(Y) = y + yq + . . . + yqflk1. Then for 

y E Rfk, T(y) = mkTk(y) where mk = N/nk. Thus for y E Rf, T(y) = 

T(yi, Y2, . . ., Yt) = (m1Ti(yi), * * *, mtTt(yt)), and so if mk = 0 (i.e., fk is irregular) 
the kth coordinate of T(y) will be identically zero, and otherwise the kth coordinate 
ranges freely over GF(q). This shows that dim range (T) = number of regular 
divisors. To prove the last sentence of Theorem 1, notice that in the isomorphism 
Rf -Rf1 ED ... ED Rf,, GF(q) appears as the diagonal; i.e. t-tuples of the form (a, 
a, * * *, a), a E GF(q). Clearly if t > 2, range (T) cannot be contained in GF(q) since 
as we have seen the nonzero coordinates of range (T) vary independently from one. 
another. This completes the proof of Theorem 2. 

Now since 1, x, x2, * . X-1 are a basis for Rf over GF(q), the polynomials 
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Ti(x) = T(xi) = xi + xiq + ... + XiqN-l span range (T). Furthermore Ti(x)q 
Ti(x) (mod f(x)), so we arrive at the important 

COROLLARY 1. The polynomials Ti(x), 1 < i < n, include f-reducing polynomials 
unless f is already irreducible. 

Although the polynomials Ti of Corollary 1 enable us to begin the factorization 
of f, they are not usually able to reduce all the resulting factors. What is not difficult 
to show is that the best the Ti's allow is the factorization f = f1" ... fj7j+l where 
fl, f2, * * *, fj are the regular divisors of f and 7j+l is the product of the irregular 
divisors. Of course what one does in practice is compute the first f-reducing Ti, and 
then compute new Ti for each of the resulting factors. However, it is possible to 
give another set of polynomials, Ri(x), which are capable of separating all the ir- 
reducible factors of f at once. 

Definition. For each i, 1 < i < e, let mi be the least integer such that xi 
Xiqmi (mod f(x)). (It is easy to see that mi = orde,/(ei)(q), but it is not necessary to 
know e in order to compute the mi.) We define 

Ri(x) xi + X * + + x+ q i (mod f(x)). 
Then the R, clearly satisfy Rq R (mod f(x)), and so they are certainly candidates 
for f-reducing polynomials; indeed Ti(x) c Ri(x) (mod f(x)) for ci = N/me, so 
that the R i are certainly no worse than the T . We now show that the Rs, 1 < i < e, 
are capable of distinguishing all the factors of f. Two easy lemmas are required. We 
shall see that it is enough to consider the special case f(x) = Xe-1. 

LEMMA 1. Let f(x) = Xe -1 for some e prime to p. If h(x)q h(x) (mod xe-1), 
then h(x) is a GF(q)-linear combination of the polynomials Ri(x). 

Proof. We first describe the Ri. According to the definition let mi be the smallest 
integer such that xi 3xi2mi (mod Xe - 1); i.e., i iqmi (mod e). Hence Ri = xi + 
xiq + . . . + xiqmi-l, and the exponents which occur are precisely the residues mod e 
which are obtained from i by multiplying by various powers of q. For example with 
q = 3, e = 13, the orbits are (0), (1, 3, 9), (2, 6, 5), (4, 12, 10), (7, 8, 11) and so 
R, = R3 = R9 = X + X3 + X9; R2 = R6 = R5 = X2 + X5 + X6, etc. Now suppose 
h(x)12 h(x) (modXe - 1); if we let h(x) = k'= hk~k, then h(x)2 h(xq) 
E hk Xak, with exponents reduced mod e, if necessary. Hence hk = hkq = hkq2 = 

for all k, so that h(x) = ZkCK hk Rk(X), where the set K contains exactly one 
member from each equivalence class of residues modulo e given by ki ', k2 if and 
only if k_ k2 qt (mod e) for some t > 0. 

LEMMA 2. I f is an irreducible divisor of xe - 1, then there is a polynomial g with 
(xe-1, fg) = f and (fg)q fg (mod xe-1). 

Proof. Since (e, p) = 1, Xe - 1 is squarefree, and so (f, (Xe - 1)/f) = 1. Hence 
there is a g such that fg 3 1 (mod (Xe - 1)/f). This implies (fg)2 fg (mod Xe-1) 
and so also (fg)q f fg (modXe - 1). Finally from (g, (Xe- 1)/f) = 1 follows 
(fg, Xe - 1) = f. 

THEOREM 3. Let f, and f2 be distinct irreducible divisors of Xe- 1. Then there is an 
integer i, 1 < i < e, and distinct elements a, b C F such that 

Ri(x) _ a(mod fD, Ri(x) =b(mod f2). 

Hence the factors fi and f2 can be "separated" by the factorization given in Theorem 1, 
using Ri. 
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Proof. Suppose, on the contrary, that for each i there is an element ai E F such 
that Ri(x) -ai (mod fJf2). By Lemma 2 there exists h(x) such that (f1h)- = f1h 
(mod xe - 1) and (f1h, xe - 1) = fi. Lemma 1 then shows that fih bR iR(x) for 
suitable bi E F. Our assumption implies that f1h - ? bIRS - E aibi - 
b (mod fJf2); this implies f1h b (mod fl) so that b = 0. On the other hand f1h 0 
(mod fif2) is in conflict with (f1h, xe - 1) = fl, and the proof is complete. 

COROLLARY. For any squarefree f(x), the corresponding Ri(x), 1 < i < e = 
period (f), will separate all irreducible factors of f. 

Proof. Denote by Ri(e)(x) the R's associated with xe-1. Theorem 3 shows us 
that the Ri(e) (x) suffice to separate all factors of xe - 1, so they certainly suffice to 
separate the factors of f. On the other hand iqm _ xi (mod Xe - 1) certainly implies 
that xim x Xi (mod f(x)), so that R i(e)(Xx) k R i(x) (mod f(x)) for suitable ki E F; 
thus the Ri can separate all the factors off. (In fact it is not hard to see that ki = 1 
for all i.) 

The corollary to Theorem 3 shows that the R , 1 _ i < e, will separate the 
factors of f. One might hope, however, that only the R ,, 1 _ i < n, would be needed, 
but this is not always the case. For example over GF(2), if f(x) = fJf2f3 with deg fi = 
deg f2 = 4, deg f3 = 8, then R1, - - *, R11 cannot separate fi from f2. Hence the dis- 
advantage in using the Ri is that it is in general necessary to compute a large 
number of them in order to be sure they will separate all factors. However, in the 
important special case f(x) = Xe- 1, the Ri are ideally suited. (See Example 2, 
below.) 

Comparison with Berlekamp's Algorithm. The central point of Berlekamp's 
algorithm is that the equation h(x) -h(x) =0 (mod f(x)) may be regarded as a 
homogeneous system of n simultaneous linear equations in the coefficients of h. 
Thus Berlekamp finds f-reducing polynomials by finding the nullspace of a certain 
n X n matrix over GF(q). This amounts to row-reducing an n X n matrix, which 
turns out to require on the order of n3 coordinate operations over GF(q), and the 
amount of calculation is not highly dependent upon the polynomial being factored. 

On the other hand, the analysis of the algorithm of this paper is not so simple, 
for the amount of calculation required depends very heavily on the integer N which 
in turn is highly sensitive to the factorization of f. For example consider squarefree 
polynomials f(x) of degree 12 over GF(2); if f(x) is the product of the three ir- 
reducibles of degree four, N = 4, while degrees 3, 4 and 5 give N = 60. The mean 
value for N among all squarefree polynomials of degree 12 which have no linear 
factor is 16.4, and it seems reasonable to conjecture that the mean value of N grows 
linearly with n. (But one can show that the largest possible value of N grows faster 
than exp (na) for all a < 2.) Thus to compute Ti(x), one needs N successive qth 
powers of xi (modulo f(x)), which requires n2N coordinate operations. And since in 
general several Ti must be computed before an f-reducing polynomial is found, this 
algorithm is no better than Berlekamp's. However, the process of computing suc- 
cessive qth powers modulo f is a less complex operation than row-reducing an n X n 
matrix, so that the present algorithm is, for example, easier to program. 

III. Examples. 
1. Let us apply the algorithm to the polynomial f(x) = X17 + X14 + x13 + X12 

+ X11 + X10 + X9 + X8 + X7 + X5 + X4 + x + 1 over GF(2). f(0) = 1 and f is not 
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a square. Now f' = x16 + x12 + x10 + X8 + x6 + X4 + 1. We compute (f, f') by 
Euclid's algorithm, abbreviating a polynomial Ei=o airx by the (n + 1)-tuple 
(anan *-... alao): 

100111111110110011 
1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 
1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 

1 0 1 0 1 0 1 0 00 10 0 0 1 
1 0 0 0 1 0 1 0 10 10 1 0 0 1 

1 0 1 0 1 0 10 00 1 0 1 0 1 
10 10 1 01000 10 00 1 

1 0 1 0 00 00 0 0 1 0 0 
1 0 1 0 10 10 0 0 1 0 0 0 1 

10 10 0 0 0 0 0 0 1 
10 10 0 0 0 0 0 0 1 

Hence (f, f') - x10 + x8 + 1, and an easy division gives f/(f, f') X7 + X5 + X4 
+ x + 1 = 7, which we now know to be squarefree. We now compute the Ti(x), 
and to do so it is convenient to have a list of even powers of x modulo 7: 

x = 0 0 0 0 0 0 1 
X2 = 0 0 10 0 

X4 = 0 10 00 0 
X = 1 0 00 00 0 

X = 1 1 00 1 1 0 
X10= 1 00 1 1 0 1 
X = 1 0 1 0 0 1 0 

(Berlekamp observed that the operation of squaring a polynomial 
n-1 

E aixi mod f(x) 
i=O 

is the same as multiplying the vector aoa1 ... an-, by the n X n matrix of even 
powers.) We compute T1: 

x = 00000 1 0 
X2 =0 000 1 00 
X4 =0010000 
X8 =1 1 00 1 10 
x16 =0 0 1 0 1 1 
X32 = 1 000 1 0 1 

X64 =1 00 0 0 1 1 

=128 1 01 0 1 1 1 
X256 ==0 1 0000 1 

X512 = 1 00 1 1 00 

Ti(x) = 1 0 0 0 1 1 1 

X210 - x, hence N = 10. 
TI(x) is therefore an f-reducing polynomial, so 

7 = (1 0 1 1 0 0 1 1, 1 0 0 0 1 1 1) (1 0 1 1 0 0 1 1, 1 0 0 0 1 1). 

must be a nontrivial factorization: 
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1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 

1 0 0 0 1 1 1 1 0 0 0 1 1 

1 1 1 1 01 1 1 1 1 1 1 

1 0 0 0 11 1 1 0 0 0 1 1 

1 1 1 101 1 1 100 

1 1 10 1 1 0 0 0 1 1 

1 1 0 1 1 
11011 

Hence7 = (1 1 1 1 0 1) (1 1 1). Of course 1 1 1 is irreducible, and it remains to in- 
vestigate 1 1 1 1 0 1. The matrix of even powers modulo 1 1 1 1 0 1 is obtained by 
reducing the corresponding matrix for 7 by reducing mod 1 1 1 1 0 1: 

x= 0 0 0 0 1 
X2= 0 0 1 0 0 

X4= 1 0 0 0 0 

X6= 0 0 1 1 1 
X8= 1 1 1 0 0 

x = 000 1 0 x3 =0 1 000 
X2 =0 0 1 00 X6 =0 0 1 1 1 

X4 = 1 0 00 0 X12 1 0 1 0 1 

X8 =1 1 10 0 X24 =0 1 1 0 1 

x16 =0 1 01 1 x48 =1 0 1 1 0 

TI(x) = 0 0 00 1 T3(x) = 0 0 0 1 
X25 = X, N = 5 

Hence 1 1 1 1 0 1 is irreducible and so7(x) = (1 1 1 1 0 1) (1 1 1) is a product of 
irreducibles. (Actually in this case we could deduce that 1 1 1 1 0 1 was irreducible 
from N = 10 for 7, since any factorization of 1 1 1 1 0 1 would have led to a different 
N.) Next we check to see whether or not (f, f') is divisible by either of the two 
factors already found. (f, f') = (1 1 0 0 0 1)2, so we need only check for divisibility 
by 1 1 1, and it is easily found that 1 10 0 01 = (1 1 1) (1 0 1 1). Hence 

f(x) = (X 5+ X4 + X3 + X2 + 1)(X3 + X + 1)2(X2 + X-+ 1)3 

is the complete factorization. 
2. Consider the factorization of the polynomials xe - 1 over GF(p), p a prime. 

There is no loss in assuming that (e, p) = 1, since if e = elpt, then 
Xe - 1 = (zel - 1)Pt. In this special case, the computation of the R. is very simple 
(see proof of Lemma 1); one need only compute the orbits of the residues mod e 
under the cyclic permutation group generated by i -* ip (mod e), and these orbits 
contain the exponents which occur in the various Ri. For example with p = 3, 
e = 20 the orbits are 

(0), (1, 3, 9, 7) (2, 6, 18, 14) (4, 12, 16, 8) (5, 15) (10) (11, 13, 19, 17), 

and so the corresponding Ri are Ri(x) = x + X3 + X7 + X9, R2(x) = X2 + X6 + X14 
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+I- x18, R3(X) = x4t+ x& + x12 + X16, 
et- 

The- algorithm of this-paper, using the 1?s 
was programmed on an SDS-930 computer, and produced the table appearing in the 
microfiche section of this issue. 

Notes on the Table in the Microfiche Section: For a given e only the irreducible 
factors of xe - 1 which are not factors of Xe' - 1 for e' < e are given, so what we have 
really is a table of the factorization of the cyclotomic polynomials be(x) of order e, 
deg <De(x) = (e). The complete factorization is obtained from the formula xe - 1 = 
Hid e (Dd(X). As is well known, the irreducible factors of 4e(x) are all of the same 
degree = orde(p), and in fact the shape of the complete factorization may be seen 
from the orbits used to calculate the Ri. In the example given above, the orbit 
structure shows that x20 - 1 is a product of four irreducibles of degree 4, one of 
degree 2 and two of degree one. The orbits (1, 3, 9, 7) and (11, 13, 19, 17) exhaust 
the residues prime to 20, so that 120(X) is a product of two irreducibles of degree 4. 

If a polynomial f(x) = ao + a1x + * * * + amxm divides be(x), then so does its 
reciprocal polynomial f(x) = am + amilx + - - - + aoxm, and only one member of a 
reciprocal pair is listed. For those e which divide an integer of the form pt + 1, each 
irreducible divisor of be(x) is self-reciprocal; this is indicated by a "P" (since the 
polynomials are then palindromes) after the entry e. When e is either an odd prime 
r (or twice an odd prime) and be(x) = xt1- + x-2 + * * * + x + 1 (or xrl - xr-2 + 

* * - x + 1) is irreducible, the entry "I" is given. Also, for some values of e = fg 
the irreducible divisors of be(x) may be obtained from those of period f by replacing 
x by x2. This is indicated by the entry (f g). 

Finally, for p = 2 and 3 the entries are coded. Binary polynomials are given the 
customary octal representation; e.g., 7053 represents xl' + x10 + x9 + X5 + X3 + 

x + 1. Ternary polynomials are coded in the base 9; e.g., 378 represents x5 + 2x3 + 
x2 + 2x + 2. Polynomials for p = 5 and p = 7 are not coded; i.e., the coefficients 
are read directly from the table entries. 
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Table of Polynmials of Period e ove GF(p) 

e factors e factors 

3 I 97P 10265014102212641, 5 I 17441554343330237 
7 13 99 (33'3) 9 (3.3) 101 r 
11 1 103 1702476407571413 13 1 105 15639,13321 15 31 107 1 
17P 47i,727 109P 1633437743547 
19 I 1253.17703525 
21 165 1311255325115 
23 5343 .11 1474435670631 
25 (5.5) 113P 3367163573 27 (3.9) 2330160331 
29 I 2403505 
31 75 73,45 206"774541 33P 3O43,2251 115 76213103C75605 
35 16475 117 17741,17367,15035 37 I 119 16273225,u1233o321 
39 17075 121 (11.2h) 
41P 5747175,6647133 123 7373121,5746331 43P 6i213 47771,52225 125 (5.25) 
45 (15.S 127 375,*1,301,367,313,325 47 43073357 345,271,221 49 (7.7) 2P 77277,62723*71747,1241, 51 637,661 517)&5,k3 
53 I 131 I 
55 716i555 133 173"15,1532007,1334325 
57P 1735357,1341035 135 (15.9) 59 I 137? 56473f633222663A67135 61 I 673S7330373267606675673 63 1479141,155 139 I 
65P 15353,13535,12345,10761 141 1 l 
67 I 143 14 67604505061 71 13463145 145P 3M72415367,2631.37o'l 
71 503700420663 X*Tn577-v,2153%2 73 11401,1641,1511,1145 147 (a.?) 
75 (15.5) I9 I 
77 16471647235 15 1423661,194539 79 114357172606"7 
81 (3.27) 153 (51.3) 
83 I .3155 5 2 654419*7975 85 77,613,735,675 155 3 5 Z7 
87 3706175715 3327363533LOO1 89 606L,M3,7f71,7311 235 6% 6n 91 14015,15713,11721 1,9 6 1b hu 
93 3205,3247,2065 a61 1503633V6I,13213352h6z2 95 1435137342601 163 I 



e factors e factors 

165 6223427,6130725 223 3705317 54705 5 35 52504 57401 ?, 
167 51226225.4667121565742432523 2637116550561 
169 (13.13) 225 (15.15) 
171P 16353X7,1505213,1341035 227 I 

1315315,U1167671,1331155 229P 34025444467759444650147 
1055321 24455336006237114017 32645 

173 I 27527663640516240571575275 
175 (35s.5) 231 15051344155,f11274767701 
177P 311562M056440516623 233 6241072161,6626630775, 

23563311065422331671 6704436621,5766241661 
179 I 235 62'4662420377503553701674734421 
181 I 237 15Q377515452522451517276321 
183 17471737470223341C015 239 422123214143o45700106420- 
18sP 1477031141763 0331223063324217 

1761557733077 241P 141377503,143610743,161676707, 
1514627646233 150153013 ,163276547 ,130753615, 
1705153171 13477655,114135031,103377541, 

187 36000132y06473 123252545 
36347534664*15 243 (3-81) 

189 (6303)l7 245 (35.7) 
,19b 4021026U1563531M75M2216- 247 1440476534657,1617202471651, 

12266314177 1233142314101 
193P 10206534661o57o3n41721- 249P 36012141264370 552213417 

066352601, 2755361003707657437002172675 
174030257?277055533217- 

65772414037 
195 17657,16701,15347,12601 
197 I 
199 13237042705305723136255- 

507071f2553 
201P 17700735637357473560177 

133612k.2762R056755 
203 16.72351672351"7235167235 
2W 76 237970376Mi,6727M3, 

ad 415,4*351 ,5327265 , 
5017105 ",457501 

207 (69.3) 
209P 1522k6 161351131.2et0o1o3, 

Ul5224U4S13S37S3753S1231024531 

213 3571.4t363*0717553625 
215 3657fl,%3,3351o41305, 

2712762331 
217 163h.3316A05,1%l26S5,u2yS, 

137325,107501 
219 Od 51a61,161 o545m, 

221 1715150s27Q5 
*WW PIU_ % 



n factors n factors 
P ~~~ ~~~~~~~~68 162802,014 4 (22) 70 688 

5 I 71 300 138 5628 7 I 73P U105311i 1,fl01l, 150024, 8 15 1634337,17431.47,1t06627 10 I 74P 1223 s5a,18145252157 11 378 76P 13263380fzh6237765rs 13 45,38 77 1187352778301187 14 I 79 I 
16 (8.2) 80 105,185 108,1M8 17 1 82P 17 l17,1A07,1535 42 19 I 3 83 377073178018512o78 20 137 85 162671324,174108711 22 387 86 I 23 322158 88 103275,1062.8 25 (5s5) 89 I 
26 37,47 91 1131,1217,13741,13r7,1175.15,a 28t 1334,1667 92 (6.2) 29 I 94 532526621361 31 I .09WM10 1.*3W 32 (Bee97? 10375778 52135778h631 34 I W3M 62 6Y*1311 35 1853511 98 A.7 
37P 16303821 100 20.5) 1578282781 
38 I 
40 141 171 
41-P 115;C,12351, 

14a14, 15021. 
43 I 
44 (22.2) 
46 546331, 

456332 
47 431416612362 

9 7.7) 
10.5) 

52 26.2) 
53 I 
55 11870256.87 
56 1242,1608 
58 I 
59 166244826248712 
61P 101431,116671 ,125551,155854, 

158284,176377 
62 1 
64 (8.8) 
65 1543667,1725141 
67P 1328663688 

141326380414 
170066466017 



n factors n actors 

2 I 2 I 
3 I 3 13 
4 12 4 (2.2) 6 I 5 I 
7 I 6 12 8 (4.2) Op 131,141 9 (3.3) 9 (3.3) 
11 .2 114 10 I 
12 121 1 I 
13P 13031,12121,11411 12 (6.2) 14 I 13 I 
16 (4.4) 15 12412 
17 I 16 116,136 18 (6.3) 17 1 19 1032224241A (6.3) 
21? 14313k1,1022201 19 1026.1336)1416 22 nk431 20 13441 
23 I 22 I 24 112,123 23 I 
26P 32021,13131,14h41 24 114,15 27 (3.9) 25P 1221,1.041,14341,15s51,16561 

29P 1422403042241 27 (3.9) 
v M*12O4IA3133b 21 29 11530016,12505616 31 1 P12,nnk 4204 30 13261 32 - (4.85 31 136631.104313626 33 1f 41340o31 32 (16.2) 34 1 33 124A124124 36 (12.3) 34 I 

387 I 36 (6.6) 30 1033234341 37 10034J2256,1012226316 39 203k10(t21,113a 38 1021,fl31,1341 41P 1002330333OMoo1 39 1f1212412&1 
flk0412f0131.I214n1 11631,14661 .n 10222,10232o1,nn1343 41 1 

43 I 
43P 1022201,10I601,n353n,141a41, il lln , 32 1S5*5S1,16o2oXi,164h 1.6 j lp 12526562521,15556265551 fl 45 (15.3) ha 24.2.) 46 I2 ,pS S-S~ 49 7.7) 47 123415362520"fl25o016 8 113,123,12M,14, 
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IfLER: PR0CMEDUR SAA Z, C , NINN); 

/* LEHMER FMS THE ZEROS 0 THE POLYNOMIAL OF DFDREE NN 
WH$SE C$EFFICIENTS ARE C3SNTAIED IN THE ARRAY AA 
BY A 1$DIF1CATI$N OF LE I4ER'S METHOD. THE APPFXIMATE 
ZEn0s ARE RETURNED IN THE ARRAY Z. WITH FACI ZER$ Tmi 
PR$EDURE RERNS A CNDyON NkEER I N THE ARRAY 
CSND. FSR SIMLE ZEROS THE PRODUCT OF THIS ?R4ER AND 
THE RATIE PRECISI$N OF THE ARITHMETIC MAY GIVE 
AN INDICATION 3F THE ABSOLUTE ACCRACY F THE 
APPR0XIMATE ZER3. 

[CIARE ((M,z)(*) (A,B,cC)(OM),(S,DEaTAsSK1 STATIC) 
cqeeLsx( 165 I, RP,3SLDR) StATIC REAL(16 ),C0ND(*) 
(C$NS XIT( 1.625),* 
CmNR Inrr(o.875), 
BIOMFGA INIT(1.rE75), 
UNIT(8) c0ILx(16) INIT 
(+1.0000 . 0.0000,I 
+0.701 - 0.70711:, 
+0.7071 + 0. 7071 IJ 
+0000 - 1.00001, 
-0.0000 + 1.00001, 
-0.7071 - 0.7071I, 
-0.7071 + 0.70711, 
-1.0000 - O.ooo )) STATIC, 

C$HN MaRY RULTRNS(BIT(l)), 
NURD ENTRY(,,,,FIJPD BINARY); 

8STIUP: /* INITIALIZE THE PR$GRAM To IGNORE UNDERFL$WS ANT SCALE 
THE C$EFICIETS 8 THAT THE POLY*IAL IS H0NIC. 

DOlaO TI UN; A(I)aAA(I)/AA(NN); END; 
N = NI; 
$LDR m O; 

VTART: /* D DuaE AN INITIAL ANNLLULS AB$UT THE $RIGIN. IF N$ 
PRxIVIUS zv$ HAS sEN FpVN CALCUIATE TM STARTIG 
RADIUS. IEISE USE THE $UTER RADIU OF THE OLD 
-IAIS. 

S - 0; 


