Factorization of Polynomials over Finite Fields

By Robert J. McEliece*

Abstract. If f(z) is a polynomial over GF(gq), we observe (as has Berlekamp) that if

h(z)t = h(z) (mod f(z)), then f(z) = ][ €6r(q ged (f(z), h(z) — a). The object of this paper

is to give an explicit construction of enough such A’s so that the repeated application of

this result will succeed in separating all irreducible factors of f. The h’s chosen are loosely

defined by ki(x) = ¢ 4 ' 4 i 4 ... (mod f(z)). A detailed example over GF(2) is

given, and a table of the factors of the cyclotomic polynomials ®,(z) (mod p) for p = 2,

n = 250;p =3,n =100; p = 5,7, n < 50, is included.

I. Introduction. The object of this paper is to present a workable algorithm for
factoring polynomials over finite fields. The existence of such an algorithm is not in
doubt since it is clearly possible to generate recursively all irreducible polynomials
of a given degree over a given finite field, and then test any polynomial for di-
visibility by the irreducibles, one by one; naturally such an algorithm is highly
impractical for even low degrees. It is of course frequently necessary to be able to
factor polynomials over finite fields; for example in factoring rational primes in
algebraic number fields. The algorithm to be given is quite usable; for example over
GF (2) it is effective for hand calculations up to degree 15 or so, and with the aid
of a computer it is possible to go up to degree several hundred without difficulty.
Through the use of this algorithm we have constructed a table, appearing in the
microfiche section of this issue, of the factors of » — 1 over GF(p) for p = 2,
n<250;p=3n=100;p =5,n = 50, p = 7, n = 50. This table gives the
factorization of the primes 2, 3, 5, 7 in the corresponding cyclotomic fields, and is
also of use in studying linear recurrence relations of period n over GF(p), since the
characteristic polynomials of such recurrences are precisely the divisors of z» — 1.
Published tables of irreducible polynomials over finite fields are insufficient to
factor z» — 1 for even modest values of n; for example Marsh’s table [1] of polyno-
mials irreducible over GF(2) up to degree 19 cannot be used to factor % — 1 over
GF(2).

Let us finally mention that Berlekamp [2] has recently published a similar
algorithm, which shares Theorem 1, below, with ours, but proceeds in a somewhat
different direction. A brief comparison of the two algorithms is given at the end of
the next section.

II. The Algorithm. Throughout, let F = GF(q), ¢ = p", p a prime. If f(z) and
g(z) are polynomials over F, denote by (f, g) their greatest common divisor, which
we assume is monic. (We also adopt the convention (f, a) = 1 for a € F.) We are
given a polynomial f(z) of degree n over F, and are asked to write f as a product of
irreducible factors. We are free to assume that f(x) is squarefree, since unless f is a
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pth power, f/(f, f/) will be a nontrivial squarefree divisor of f. And while the algo-
rithm can be applied to an arbitrary polynomial, squarefree or not, to find the ir-
reducible powers which divide it, any preliminary reduction in the degree of f which
can be made will shorten the computations. Thus f(x) is henceforth squarefree. We
further assume f(0) = 0. Under these circumstances there will be a smallest integer
e such that f(z)|z* — 1 and (e, p) = 1. e is called the period of f.

Theorem 1 gives a way to factor f, under certain circumstances:

TuEOREM 1. If h(x)? = h(x) (mod f(x)), then

@) = 1 (f@), hz) — a) .
a<F

Proof. Let 8 be a root of f in a splitting field K. Then h(6)? = h(f) and so h(6),
being fixed by the Galois group of K/F, is an element of F. Thus every root of f is a
oy oF axachly ane 3t the pelimemiels hix), — 4, and. Thearem. 1 follows..

Theorem 1 need not give a nontrivial factorization of f;if h(x) = a(mod f(x)) for
some ¢ & F, Theorem 1 is of no use. However, if Theorem 1 does give a nontrivial
factorization of f, we say that h is an f-reducing polynomial; naturally & is auto-
matically f-reducing if 0 < deg h <'n = degf. (It will soon develop that f-reducing
polynomials always exist if f is reducible.) The object of the rest of this section is to
indicate a method of constructing f-reducing polynomials. There are two possible
ways the algorithm could work: first, we could find just one f-reducing polynomial,
and then inductively proceed to find reducing polynomials for the resulting factors;
or, we could produce so many f-reducing polynomials that they themselves would
reduce all resulting factors of f. We shall below give two similar families of f-reduc-
ing polynomials, corresponding to these two possibilities.

If we discover the least integer N such that z¢¥ = x(mod f(z)), then N = lL.c.m.
(n1, ne, -+, ny), where f(x) = fi(x) folx) - - - fi(x) is the factorization of f into ir-
reducibles with deg fi = n:. N is the degree of the splitting field for f. Now consider
the algebra R; over GF(q) of polynomials y = y(z) (mod f(z)), and define the map
T@) =y 4+ y* + y@* + --- + y?¥ ', Next we say that f; is a regular divisor of f
if N/ns is not divisible by p. Note that regular divisors always exist.

Turorem 2. T is a GF (q)-linear function on R; whose rank is equal to the number
of regular divisors of F. Range (T) © GF(q) if and only if f is irreducible.

Proof. By a generalization of the well-known Chinese Remainder Theorem
[3, p. 63] R; is isomorphic to the direct sum B; @ --- @ Ry, under the map y —
(Y1, Y2, -+, yu) With y = y; (mod fi(x)). Since the f; are irreducible, the Ry, are
fields. Let T be the trace on Ry,;ie., Th(y) = y + y¢ + --- + y= . Then for
Yy € Ry, T(y) = meTw(y) where my = N/my. Thus for y € R, T(y) =
T(ys, Yoy + -+, Ys) = (maT1(yy), * - -, mTe(y:)), and so if mz = 0 (i.e., fi is irregular)
the kth coordinate of T'(y) will be identically zero, and otherwise the kth coordinate
ranges freely over GF(q). This shows that dim range (7) = number of regular
divisors. To prove the last sentence of Theorem 1, notice that in the isomorphism
R;=R; ® --- ® Ry, GF(q) appears as the diagonal; i.e. i-tuples of the form (a,
a, ---,a),a € GF(q). Clearly if { = 2, range (T') cannot be contained in GF(g) since
as we have seen the nonzero coordinates of range (T') vary independently from one.
another. This completes the proof of Theorem 2.

Now since 1, z, 22, ---, 2" are a basis for R; over GF(q), the polynomials
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Tix) = T(x®) = z* + x% + .-+ 4+ z%"* span range (T). Furthermore T;(z)? =
T i(x) (mod f(x)), so we arrive at the important

CoROLLARY 1. The polynomials T (x), 1 = 7 < n, include f-reducing polynomials
unless f is already trreducible.

Although the polynomials T'; of Corollary 1 enable us to begin the factorization
of f, they are not usually able to reduce all the resulting factors. What is not difficult
to show is that the best the T'/s allow is the factorization f = f; - - - f;f;41 where
f1, f2, -+, f; are the regular divisors of f and F;,1 is the product of the irregular
divisors. Of course what one does in practice is compute the first f-reducing T';, and
then compute new T'; for each of the resulting factors. However, it is possible to
give another set of polynomials, R(x), which are capable of separating all the ir-
reducible factors of f at once.

Definition. For each 7, 1 < 7 < e, let m; be the least integer such that z? =
z™i (mod f(z)). (It is easy to see that m; = ord.,,:(q), but it is not necessary to
know e in order to compute the m;.) We define

Riw) =" + 2"+ - + 2" (mod f(2)) .
Then the R; clearly satisfy R? = R (mod f(z)), and so they are certainly candidates
for f-reducing polynomials; indeed T.(z) = c;R:(x) (mod f(z)) for ¢; = N/m;, so
that the R; are certainly no worse than the 7;. We now show that the B;, 1 < ¢ <ee,
are capable of distinguishing all the factors of f. Two easy lemmas are required. We
shall see that it is enough to consider the special case f(x) = z¢ — 1.

LeMMA 1. Let f(x) = z° — 1 for some e prime to p. If h(z)? = h(z) (mod z¢ — 1),
then h(zx) is a GF (q)-linear combination of the polynomials R i(x).

Proof. We first describe the R ;. According to the definition let m; be the smallest
integer such that z? = z%™ (mod z¢ — 1);i.e., 7 = i¢™ (mod ¢). Hence R; = z* +
z%¢ 4 ... 4 z%™! and the exponents which occur are precisely the residues mod e
which are obtained from ¢ by multiplying by various powers of g. For example with
g = 3, e = 13, the orbits are (0), (1, 3, 9), (2, 6, 5), (4, 12, 10), (7, 8, 11) and so
Ri=R;=Ry=z+4+ 24+ 2°; R = Ry = Rs = 22 4+ 2° 4+ x5, etc. Now suppose
h(x)? = h(z) (mod 2¢ — 1); if we let h(z) = D 1=t hu*, then h(x)? = h(z?) =
> iz, with exponents reduced mod e, if necessary. Hence hy = hxg = hig? = - - +
for all k, so that h(x) = D iex hx Ri(x), where the set K contains exactly one
member from each equivalence class of residues modulo ¢ given by ky ~ ks if and
only if k1 = k. ¢* (mod e) for some ¢ = 0.

LeMwMa 2. If f 4s an irreducible divisor of x® — 1, then there is a polynomial g with
(z* — 1, fg) = f and (fg)* = fg (mod z* — 1).

Proof. Since (e, p) = 1, z° — 1 is squarefree, and so (f, (x¢ — 1)/f) = 1. Hence
there is a g such that fg = 1 (mod (z* — 1)/f). This implies (fg)? = fg (mod z¢ — 1)
and so also (fg)? = fg (mod z¢ — 1). Finally from (g, (xz* — 1)/f) = 1 follows
(fg, 2z — 1) = f.

TuaeoREM 3. Let f1 and f2 be distinct trreducible divisors of x¢ — 1. Then there is an
integer 7, 1 < 1 < e, and distinct elements a, b € F such that

Ri(z) = a(mod f;) , Ri(z) = b(mod f>) .
Hence the factors f1 and fs can be ‘“‘separated”’ by the factorization given in Theorem 1,
using R;.
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Proof. Suppose, on the contrary, that for each 7 there is an element a; € F such
that R:(x) = a; (mod fif2). By Lemma 2 there exists h(xz) such that (fih)? = fih
(mod z¢ — 1) and (fih, 2* — 1) = f;. Lemma 1 then shows that fyh = D b:R.(x) for
suitable b; € F..Our assumption implies that fih = Z bR, = Z ab; =
b (mod f1fs) ; this implies f1h = b (mod f1) so that b = 0. On the other hand fih = 0
(mod fif2) is in conflict with (fih, z¢ — 1) = f1, and the proof is complete.

CoROLLARY. For any squarefree f(x), the corresponding Ri(z), 1 = 7 < e =
period (f), will separate all irreducible factors of f.

Proof. Denote by R;®(x) the R’s associated with ¢ — 1. Theorem 3 shows us
that the R; () suffice to separate all factors of ¢ — 1, so they certainly suffice to
separate the factors of f. On the other hand z%™ = 2 (mod z¢ — 1) certainly implies
that z%™ = z¢ (mod f(z)), so that R;®(z) = k.R.(x) (mod f(z)) for suitable k; € F;
thus the R; can separate all the factors of f. (In fact it is not hard to see that k; = 1
for all 7.)

The corollary to Theorem 3 shows that the R;, 1 < ¢ < e, will separate the
factors of f. One might hope, however, that only the B;, 1 < 7 < n, would be needed,
but this is not always the case. For example over GF (2), if f(x) = fifsfs with deg f1 =
deg fo = 4, deg f3 = 8, then Ry, - - -, Ry cannot separate fi from f,. Hence the dis-
advantage in using the R; is that it is in general necessary to compute a large
number of them in order to be sure they will separate all factors. However, in the
important special case f(x) = z¢ — 1, the R, are ideally suited. (See Example 2,
below.)

Comparison with Berlekamp’s Algorithm. The central point of Berlekamp’s
algorithm is that the equation A(z)? — h(z) = 0 (mod f(z)) may be regarded as a
homogeneous system of n simultaneous linear equations in the coefficients of h.
Thus Berlekamp finds f-reducing polynomials by finding the nullspace of a certain
n X n matrix over GF(q). This amounts to row-reducing an n X n matrix, which
turns out to require on the order of n? coordinate operations over GF(q), and the
amount of calculation is not highly dependent upon the polynomial being factored.

On the other hand, the analysis of the algorithm of this paper is not so simple,
for the amount of calculation required depends very heavily on the integer N which
in turn is highly sensitive to the factorization of f. For example consider squarefree
polynomials f(z) of degree 12 over GF(2); if f(x) is the product of the three ir-
reducibles of degree four, N = 4, while degrees 3, 4 and 5 give N = 60. The mean
value for N among all squarefree polynomials of degree 12 which have no linear
factor is 16.4, and it seems reasonable to conjecture that the mean value of N grows
linearly with n. (But one can show that the largest possible value of N grows faster
than exp (n®) for all @ < %.) Thus to compute 7;(z), one needs N successive gth
powers of x¢ (modulo f(x)), which requires n?N coordinate operations. And since in
general several T'; must be computed before an f-reducing polynomial is found, this
algorithm is no better than Berlekamp’s. However, the process of computing suc-
cessive gth powers modulo f is a less complex operation than row-reducing ann X n
matrix, so that the present algorithm is, for example, easier to program.

III. Examples.
1. Let us apply the algorithm to the polynomial f(z) = 27 + 24 4 218 4 21
+ a4 210+ 2% + 28+ 2" + 25+ 2t + 2 + 1 over GF(2). f(0) = 1 and fis not
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a square. Now f/ = z16 + 22 4 21° + 28 4+ 2% 4 z* 4+ 1. We compute (f, f') by
Euclid’s algorithm, abbreviating a polynomial > 5o a’ by the (n + 1)-tuple
(@n@n1 -+ - @1@0):

100111111110110011
10001010101010001
101010100010001
10001010101010001
100000100010101
101010100010001
1010000000100
101010100010001
10100000001
10100000001

Hence (f, ) = '° + 28 4+ 1, and an easy division gives f/(f, f/) = a7 + z° + x*
+ z + 1 = 7, which we now know to be squarefree. We now compute the T(z),
and to do so it is convenient to have a list of even powers of x modulo f:

2 =0000001
22 =0000100
22 =0010000
2 =1000000
2 =1100110
2 =1001101
22 =1010010
(Berlekamp observed that the operation of squaring a polynomial
n—1
> ax’ mod f(x)
=0
is the same as multiplying the vector aea; - - - @,—1 by the n X n matrix of even
powers.) We compute T';:
x =0000010
a2 =0000100
x4 =0010000
x8 =1100110
26 =0001011
2 =1000101
24 =1000011
22 =1010111
2% =0100001
22 =1001100
Tix) = 1000111

22'° = z, hence N = 10.
T1(z) is therefore an f-reducing polynomial, so

f=@10110011,1000111)(10110011,100011)

must be a nontrivial factorization:
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10110011 10110011
1000111 100011

111101 111111

1000111 100011

111101 11100

111101 100011

11011

111

111

111

Hencef = (111101) (111).O0f course 1 11 is irreducible, and it remains to in-
vestigate 1 1 1 1 0 1. The matrix of even powers modulo 1 11 10 1 is obtained by
reducing the corresponding matrix for ¥ by reducing mod 11110 1:

2=00001

22=00100

¢ =10000

2 =00111

22 =11100
z =00010 a3 =01000
z? =00100 z8 =00111
xt =10000 12 =10101
z8 =11100 % =01101
x6 =01011 xt8 =10110
Tix) = 0000 1 To@) = 0000 1

P =z, N=5

Hence111101isirreducibleandsof(z) = (111101) (11 1) is a product of
irreducibles. (Actually in this case we could deduce that 11 1 1 0 1 was irreducible
from N = 10 for f, since any factorization of 1 11 10 1 would have led to a different
N.) Next we check to see whether or not (f, f/) is divisible by either of the two
factors already found. (f, f/) = (1100 0 1) so we need only check for divisibility
by 111, anditis easily found that 110001 = (111) (1 0 1 1). Hence

@)= @ +2'+2" ++ DE + 2+ D'+ 24+ 1)°
is the complete factorization.

2. Consider the factorization of the polynomials ¢ — 1 over GF(p), p a prime.
There is no loss in assuming that (e, p) = 1, since if e = eip?, then
z¢ — 1 = (2 — 1)?*, In this special case, the computation of the R, is very simple
(see proof of Lemma 1); one need only compute the orbits of the residues mod e
under the cyclic permutation group generated by ¢ — <p (mod ¢), and these orbits
contain the exponents which occur in the various R; For example with p = 3,
¢ = 20 the orbits are

0), (1, 3,9,7) (2, 6, 18, 14) (4, 12, 16, 8) (5, 15) (10) (11, 13, 19, 17),
and so the corresponding R; are Ri(z) = z + 2% 4+ 27 + 29, R2(x) = 22 + % + 2
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+ 213, R3(z) = a* + «¥ + ' + 5 ete: The algorithm: of this paper, using the B/s,
was programmed on an SDS-930 computer, and produced the table appearing in the
microfiche section of this issue.

Notes on the Table in the Microfiche Section: For a given e only the irreducible
factors of z¢ — 1 which are not factors of z¢ — 1 for e’ < e are given, so what we have
really is a table of the factorization of the cyclotomic polynomials ®.(x) of order e,
deg ®.(x) = ¢(e). The complete factorization is obtained from the formula z¢ — 1 =
I1ate ®a(x). As is well known, the irreducible factors of ®,(z) are all of the same
degree = ord.(p), and in fact the shape of the complete factorization may be seen
from the orbits used to calculate the R;. In the example given above, the orbit
structure shows that 22 — 1 is a product of four irreducibles of degree 4, one of
degree 2 and two of degree one. The orbits (1, 3, 9, 7) and (11, 13, 19, 17) exhaust
the residues prime to 20, so that ®2¢(z) is a product of two irreducibles of degree 4.

If a polynomial f(x) = ao + awx + - -+ + anz™ divides ®,(zx), then so does its
reciprocal polynomial f(z) = am + @m_1z + - - - + asx™, and only one member of a
reciprocal pair is listed. For those e which divide an integer of the form p* + 1, each
irreducible divisor of ®.(z) is self-reciprocal; this is indicated by a “P” (since the
polynomials are then palindromes) after the entry e. When e is either an odd prime
r (or twice an odd prime) and ®,(z) = 2™ '+ 22+4+ .- + 2+ 1 (oraz™! — 272 4

- — z 4+ 1) is irreducible, the entry “I” is given. Also, for some values of ¢ = fg
the irreducible divisors of ®.(z) may be obtained from those of period f by replacing
z by «¢. This is indicated by the entry (f-g).

Finally, for p = 2 and 3 the entries are coded. Binary polynomials are given the
customary octal representation; e.g., 7053 represents z* + x'° + z® + z°® + z® 4
z + 1. Ternary polynomials are coded in the base 9; e.g., 378 represents z° + 222 +
2?2 + 2z 4+ 2. Polynomials for p = 5 and p = 7 are not coded; i.e., the coefficients
are read directly from the table entries.

Information Processing
Jet Propulsion Laboratory
Pasadena, California 91103
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9 (3.3)
10 1
1 1
12 (6.2)
13 1
15 12k12
16 116,136
17 1
18 (6.3)
19 1026,1336,1416
20 13hk1
22 1
23 1
2k 114,152
gzr 12421, 1h0U1,14341,15551,16561
1

44 (3.9)
29 11530016,1.2505616
30 13264
n 136634120431 3626
32 (16.2)
33 12k12012412
34 1
36 (6.6)
37 1003442256 1012226316
38 1021,1131,1341
39 124121241241
ll:o 11631,14k661

1 1 .
k3P 1022201,1086401,1135311,1416141,

1550551,1602061. ,16k 3461

Mip 12526562521 15556265551
:2 95. 3)
k7 123454 362520840342500016
L8 113,123,12%,1h5°
SOP 115M,12521,13031,13332, 15451



ON LEHMER''S METHOD

FOR FINDING THE ZEROS OF A POLYNOMIAL

PL/I Program

by

§. W. STEWART III



LEHMER: PRYCEDURE(AA, Z, CAND, NN) ;

/* LEHMER FINDS THE ZER$S @t THE PPLYNPMIAL @F DEGREE NN
WH@SE CPEFFICIENTS ARF CPNTAINED IN THE ARRAY AA .
BY A MPDIFICATI@N ¢F LEHMER'S METHED. THE APPREXIMATE
ZER$S ARE RETURNED IN THE ARRAY Z. WITH EACH ZER$ THE

E RETURNS A CANDITHN NRBER IN THE ARRAY

CPND. FPR SIMPLE ZER@S THE PRPDUCT OF THIS NUMBER AND
THE RELATIVE PRECISIPN ¢F THE ARITHMETIC MAY GIVE
AN INDICATI#N fFP THE ABSPLUTE ACCURACY ¢¥ THE
APPROXIMATE ZERJ.

DECLARE ( z)(*) (A,B,C) O:NN), (S, DELTAS,SK) STATIC)
,PLDR) STATIC RaAL(lf) CEND(* )
(c¢ns mrr 1 625),
CPNR INIT(0.875),
BIGMEGA INIT(1.E7S),
UNIT(8) C#MPLEX(16) INIT

(+1.0000 + 0.00001I,
+0.7071 - 0.7071I,
+0.70T1 + 0.7071I,
40.0000 - 1.00001,
-0.0000 + 1.00001,
-0.7071 - 0.70711,
-0.7071 + 0.70711,

-1.0000 - 0.00001)) STATIC,
COfHN ENTRY RETURNS(BIT(1)),
FUNDER ENTRY(,,,,PIXED BIRARY);

S8ETUP: /* INITIALIZE THE PRPGRAM T¢ IGNYRE UNDERFLEWS AND SCALE
THE cﬂmzcm«rs S THAT THE PPLYNSMIAL IS M@NIC.

gﬂ 100 T8 KN: ACT)=AA(I)/AA(NN); END;

K = )NN;
$LDR = O;

START: /% DETERMINE AN INITIAL ANNULUS ABJUT THE @RIGIN. IF N¢
PREVIPUS ZER# HAS BEEN FPUND CALCULATF. THE STARTING
RADIUS. @THERWISE USE THE $UTER RADIUS OF THE ¢LD
ANWULUS.

8 = 0;



